On Fox Quotients of Arbitrary Group Algebras

نویسنده

  • Manfred Hartl
چکیده

For a group G and N-series G of G let In R,G(G), n ≥ 0, denote the filtration of the group algebra R(G) induced by G , and IR(G) its augmentation ideal. For subgroups H of G , left ideals J of R(H) and right H -submodules M of IZZ(G) the quotients IR(G)J/MJ are studied by homological methods, notably for M = IZZ(G)IZZ(H), IZZ(H)IZZ(G) + IZZ([H,G])ZZ(G) and ZZ(G)IZZ(N) + In ZZ,G(G) with N CG where the group IR(G)J/MJ is completely determined for n = 2. The groups In−1 ZZ,G (G)IZZ(H)/I n ZZ,G(G)IZZ(H) are studied and explicitly computed for n ≤ 3 in terms of enveloping rings of certain graded Lie rings and of torsion products of abelian groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fox and augmentation quotients of semidirect products

Let G be a group which is the semidirect product of a normal subgroup N and some subgroup T . Let In(G), n ≥ 1, denote the powers of the augmentation ideal I(G) of the group ring Z(G). Using homological methods the groups Qn(G,H) = In−1(G)I(H)/In(G)I(H), H = G,N, T , are functorially expressed in terms of enveloping algebras of certain Lie rings associated with N and T , in the following cases:...

متن کامل

Group Actions and Rational Ideals

We develop the theory of rational ideals for arbitrary associative algebras R without assuming the standard finiteness conditions, noetherianness or the Goldie property. The Amitsur-Martindale ring of quotients replaces the classical ring of quotients which underlies the previous definition of rational ideals but is not available in a general setting. Our main result concerns rational actions o...

متن کامل

On nuclei of sup-$Sigma$-algebras

‎In this paper‎, ‎algebraic investigations on sup-$Sigma$-algebras are presented‎. ‎A representation theorem for‎ ‎sup-$Sigma$-algebras in terms of nuclei and quotients is obtained‎. ‎Consequently‎, ‎the relationship between‎ ‎the congruence lattice of a sup-$Sigma$-algebra and the lattice of its nuclei is fully developed.

متن کامل

Ideal Structure of Graph Algebras

We classify the gauge-invariant ideals in the C∗-algebras of infinite directed graphs, and describe the quotients as graph algebras. We then use these results to identify the gauge-invariant primitive ideals in terms of the structural properties of the graph, and describe the K-theory of the C∗-algebras of arbitrary infinite graphs.

متن کامل

QUANTALE-VALUED SUP-ALGEBRAS

Based on the notion of $Q$-sup-lattices (a fuzzy counterpart of complete join-semilattices valuated in a commutative quantale), we present the concept of $Q$-sup-algebras -- $Q$-sup-lattices endowed with a collection of finitary operations compatible with the fuzzy joins. Similarly to the crisp case investigated in cite{zhang-laan}, we characterize their subalgebras and quotients, and following...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010